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We present computer simulations of both two and three dimens ional versions of a
coarse-grained bead-spring model for the polymers, invest igating their structural prop-
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1 Introduction

In a recent computational study, it could be shown that �exib le polymers interacting with
a wirelike substrate possess a barrellike phase [1]. Optimally packed, the monomers form
a cylindrical polymer tube, reminiscent of a triangular lat tice which wraps around the
wire. Depending on the competition between steric constrai nts and monomer–substrate
attraction, other structural phases can also form. These phases were also found in previ-
ous, related studies of polymers interacting with nanocyli nders [2,3].

Tubelike structures formed by atoms or molecules possess interesting physical prop-
erties such as amazing mechanical stability, which make them potential candidates for
nanotechnological applications. Recently, tin nanowires have been coated with atomic
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nanotube structures in order to stabilize them for conducti ng superconductivity exper-
iments, i.e., protect them from shape fragmentation as well as from oxidation [4]. The
understanding of the wetting behavior of atomic nanotubes w ith polymeric materials
has been claimed to be the key to carbon nanotube–polymer composites [5]. Biological
cells require a stable cytoskeleton which consists of tubelike myosin �bers.

The most prominent examples of tubes on atomistic scales arecarbon nanotubes [6,7]
which can be thought of as “rolled-up” and “zipped” sheets of graphene, sharing its
hexagonal honeycomb lattice structure and sp2 hybridized atoms [8–11]. Speci�cally,
single-walled carbon nanotubes (SWCNTs) have been extensively studied on different
levels of approximation. While nanotube models are typical ly based on continuum ap-
proximations, it has recently been shown that their atomist ic nature is crucial for correct
estimation of nanotube parameters [12,13].

As well as carbon nanotubes, boron and boron nitride tubes ha ve also been cre-
ated [14] and modeled. A review of boron tube modeling is give n in Ref. [15]. The
salient differences between boron and carbon tubes are that the boron tubes form a tri-
angular lattice structure (as do the polymer tubes) but the b oron tubes appear to require
either puckering, substitution with nitrogen or regular va cant sites for stability, unlike
both polymer and carbon tubes. Thus the polymer tubes share o ne feature – the underly-
ing lattice – with single-walled boron nanotubes (SWBNTs) a nd another – non-buckled,
translationally invariant surfaces – with the carbon tubes .

From a formal point of view the hexagonal nanotube atomic lat tice is dual [16] to
the triangular lattice, suggesting there may be a deeper connection. This has been ex-
tensively explored for idealized single-walled boron nano tubes [15], but the buckling
or regular vacancies in real boron tube structures complica te a precise modeling. The
polymer tubes we investigate in this study are complete, unb uckled triangulations of
single-walled tubes and thus we can directly adopt the theor y introduced in Ref. [15] for
idealized boron tubes to link our results for polymer tubes w ith known atomic boron and
carbon nanotube structures.

This paper is structured as follows. The description of the h ybrid polymer–wire
model leading to monolayer polymer tube conformations for c ertain parameters, and
a summary of our previous �ndings on those systems, is given in Sect. 2. In Section 3 we
present details of typical nanotube con�gurations and quant ify their characterization.
Since the correct treatment of discrete tube structures is indispensable for our discussion
and was introduced quite recently, we also review the polyhe dral model for the descrip-
tion of ideal nanotubes in detail. In Sections 4 and 5 we will p resent a detailed discussion
of our mappings and simulations based on Monte Carlo simulati ons in the full three
dimensional space (Sect. 5.1). These simulations indicatethat it is indeed adequate to re-
strict the investigation to polymers on cylindrical surfac es (Sect. 5.2) in order to introduce
a precise classi�cation of polymer tubes. We show that while c ertain crucial differences
are present, there is a deep similarity between atomistic nanotubes and polymer tubes. A
summary of observations and conclusions will complete the p aper.
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2 Structural properties of polymer tubes

2.1 Polymer–wire model

For our study of polymer tubes, we employ a coarse-grained hy brid model of a �exible,
elastic polymer interacting with an attractive stringlike nanowire. We found recently that
such a system possesses a conformational phase, in which tubelike monolayer structures
spontaneously form [1]. In our model, pairs of monomers inte ract via a truncated and
shifted Lennard-Jones (LJ) potential

Vmod
LJ (r ij )= VLJ(min (r ij ,rc)) � VLJ(rc) (2.1)

with the standard form of the LJ potential

VLJ(r ij )= 4e[(s/ r ij )12� (s/ r ij )6], (2.2)

where r ij denotes the distance between theith and jth monomer. We set the respective
intrinsic energy and length scales to e= 1 and s = 2� 1/6 r0 with the minimum-potential
distance r0 = 1. The cutoff is chosen to berc = 2.5s. Covalent bonds between adjacent
monomers in the linear polymer chain interact via the �nitely extensible nonlinear elastic
(FENE) potential, which has the form [17,18]

VFENE(r i i+ 1)= �
K
2

R2ln
�

1� [(r i i+ 1� r0)/ R]2
	

. (2.3)

Its minimum coincides, by construction, with r0 and diverges for r ! r0� R. We setR= 0.3
and K = 40.

The interaction of the polymer with the wire is modeled by the potential
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where s f and ef are the monomer–wire interaction parameters and r? ;i is the distance of
the ith monomer perpendicular to the wire. We scale the potential such that its minimum
value is � 1 at rmin

? for ef = 1 and s f = 1, in which case a� 0.528. The effective thickness of
the string, s f , is related to the minimum distance rmin

? of the monomer–wire potential via

rmin
? (s f )= (693/480)1/6 s f � 1.06s f . (2.5)

Eventually, the total energy of the polymer interacting wit h the wire is given by

E=
N

å
i, j= i+ 1

Vmod
LJ (r ij )+

N � 1

å
i= 1

VFENE(r i i+ 1)+
N

å
i

Vstring (r? ;i). (2.6)

In order to identify structural properties of low-energy ad sorbed polymer conformations,
we employed stochastic minimization techniques based on general-ensemble Monte Carlo
sampling strategies such as the energy-landscape paving method [19], multicanonical
sampling [20], and the Wang–Landau method [21].
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2.2 Structural phases of the polymer–wire system

In close analogy to a recent study of a bead-stick polymer int eracting with a nanowire [1],
the full spectrum of structural phases can be revealed. Depending on the wire attraction
strength ef and its effective thickness s f , spherically globular or rather extended confor-
mations dominate. Although in this paper we are interested i n the tubelike structural
phase of the polymer–wire system only, let us brie�y review a ll phases identi�ed. In
Fig. 1, representative examples of low-energy conformatio ns in the different phases are
depicted.

Figure 1: Exempli�ed images of representative low-energy conformations in the four structural phases (see text)
of a polymer with 200 monomers interacting with an attractive nanowire. The parameter settings are: (a)
ef = 5.0, s f = 1.5 (in structural phase B), (b) ef = 3.5, s f = 2.5 (C), (c) ef = 2.0, s f = 0.5 (Gi), (d) ef = 1.0,
s f = 1.5 (Ge).

If the value of ef is small enough that monomer–monomer contacts are energetically
more favorable than contacts with the substrate, the lowest -energy conformations are
compact spherical globules. Since the wire is always attractive, the number of monomer–
substrate contacts is also maximized, such that the globular structures inclose the wire
[phase “Gi” (globular inclosed), see Fig. 1(c)]. If, on the o ther hand, the length scale
of the monomer–wire interaction exceeds the length scale of the pairwise LJ-interaction
among two monomers, the wire is pushed outward and the globul e is simply attached to
the the wire [this phase is called “Ge” (globular excluded), see Fig. 1(d)]. Starting from
phase Ge and increasing the energy scale of the attraction tothe wire, the morphology of
conformations changes. The wire-attached spherically symmetric globules “melt” along
the wire axis and reach what is called the “clamshell phase” C , see Fig. 1(b). The spher-
ical morphology is broken and the polymer starts wrapping ar ound the wire in order to
increase the energetically favored contacts with the substrate.

If the string thickness is reduced below the corresponding t hreshold value, the clam-
shells turn to “barrels” and the structural phase B is reache d. The same scenario occurs,
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when approaching from the Gi phase and passing the transitio n point, where the energy
scale of the monomer–substrate attraction is suf�ciently la rge compared to the intrinsic
polymer energy scale of nonbonded LJ-interactions to allow for an increase of monomer–
substrate contacts at the expense of monomer–monomer contacts. Since additional con-
tacts with the wire can only be formed along the wire axis, the polymer forms compact
tubelike structures in this phase, see Fig. 1(a).

For our discussion of similarities of the polymer–wire syst em with carbon nanotubes,
we will refer below only to the monolayer polymer tube struct ures formed in phase B.
Before embarking on the comparison of polymer tubes and carb on nanotubes, we brie�y
review relevant geometrical properties of SWCNTs.

3 Single-walled nanotubes

Nanotubes are typically considered as rolled-up planar ato mic sheets. A single-walled
carbon nanotube (SWCNT) is commonly pictured as a zipped mon olayer graphene sheet
(although, more detailed approaches exist [22]), crystall ized on a hexagonal (honeycomb)
lattice. All carbon atoms have the same distance from the tub e axis and thus reside on a
cylinder surface. In the original, conventional model, the SWCNT lattice was supposed to
entirely cover a cylinder, thereby assuming curved hexagon al plates and bonds, neglect-
ing the discrete nature of the lattice [11]. In a more realist ic polyhedral decomposition
approach, this is corrected by formulating constraints reg arding C-C bond lengths and
angles between them [15,23].

Single-walled boron nanotubes (SWBNTs) possess an underlying triangular lattice
structure and have also been described by cylindrical mappi ngs [15, 24]. Energetically
favored tube structures possess holes or are puckered, in which case the atoms do not lie
on a surface of a single cylinder [25, 26]. Other, non-regular structures, have also been
considered in theoretical studies of SWBNTs [27].

The triangular single-walled polymer tube (SWPT) structur es we �nd in the barrel
phase of a polymer adsorbed at a nanowire exhibit strong simi larities with ideal cylindri-
cal SWBNTs. Thus, for its geometrical description the ideal polyhedral model for SWB-
NTs with equal bond lengths [24] can easily be adopted. Since the polymers tend to form
highly regular tube structures, they are interesting candi dates for carbon nanocomposites
of polymers and SWCNTs. For these reasons, it is instructive to discuss the relationship
of SWCNTs and SWPTs in the following.

3.1 The conventional view on carbon nanotubes

In the unzipped, conventional representation, the chiral o r wrapping vector Ch point-
ing from any lattice site to its next copy (see Fig. 2) uniquel y characterizes any SWCNT
structure. The wrapping vector and the translational vecto r T, perpendicular to Ch, span
the unit cell. It is convenient to introduce lattice vectors a1 and a2 (see Fig. 2), such that
Ch = na1+ ma2 and T = [( n+ 2m)/ d]a1 � [(2n+ m)/ d]a2, where d is the greatest common
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Figure 2: Examples of carbon nanotube structures: (a) zigzag (6,0), (b) chiral (6,2), and (c) armchair (6,6)
conformation. In the top row, unzipped and unrolled planar representations are shown, the middle row illustrates
the zipping and at the bottom, the actual tube structures arevisualized.

divisor of n+ 2m and 2n+ m. Hence, the two integers n and m � n, usually written in the
vector form ( n,m), are suf�cient to differentiate between SWCNT structures.

The wrapping orientation is de�ned by the characteristic wra pping or chiral angle q
between a1 and Ch, i.e.,

cosq(n,m)
conv =( 2n+ m)/2

p
n2+ m2+ nm. (3.1)

Hence, q can take values between 0 and 30� . The corresponding limiting tube conforma-
tions for a given value of n are usually called zigzag (for m= 0) or armchair conformation
(for m= n). In Fig. 2, different visualizations of (6, m) zigzag, chiral, and armchair carbon
nanotube structures are shown.

In this conventional approach [11], SWCNTs were assumed to be planar sheets of the
(n,m) unit cell wrapped around a cylinder and continued along the c entral axis. Then,

the length of Ch corresponds to the circumference L(n,m)
conv of this cylinder. Since

jCh j = L(n,m)
conv =

p
3lCC

p
n2+ m2+ nm, (3.2)
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where lCC � 1.42	A corresponds to the C–C bond length, the radius of the zipped SWCNT
is given by

r (n,m)
conv = L(n,m)

conv /2 p . (3.3)

In this simple cylindrical mapping, the bond length is not co nserved and discrete curva-
ture effects are not correctly taken into account. However, the �atter the surface, i.e., the
larger n, the more accurate this estimate is.

For structural investigations of realistic SWCNTs, this di fference is not of particular
relevance. However, for our subsequent comparison and discussion of the relationship
between triangular SWPTs and hexagonal SWCNT shapes, the (typically small) devia-
tions must be taken into consideration, because the structural characterization on the
basis of the (n,m) vector depends sensitively on this.

Assuming that the SWCNT forms under the constraints of conse rved C–C bond
lengths, which are not necessarily all equal [28], a discrete SWCNT model can be de-
rived. The obtained geometric tube structures are in good co rrespondence with ab initio
predictions and molecular dynamics relaxation [15, 29]. Th is model is also applicable to
ultra-small nanotubes which resemble nanowires [30].

3.2 Polymer tubes and the polyhedral model for nanotubes

In the tube phase, polymers attracted by a thin wire form comp act conformations. Be-
cause of the elasticity and �exibility of the polymer model c onsidered here, monomers
are optimally packed in a triangular arrangement. Unzippin g such a polymer tube yields
a regular triangular lattice, whose lattice vectors are ide ntical with a1 and a2 introduced
earlier for the de�nition of the wrapping vector Ch of the SWCNTs. Consequently, the
(n,m) notation for the characterization of SWCNTs can also be impl emented to charac-
terize the SWPTs.

The polymer tubes we �nd in the monolayer barrel phase of our po lymer–nanowire
adsorption model can be well described by the ideal boron nan otube model [15, 24],
where all bonds are considered to have an identical length lBB. This assumption corre-
sponds well to the de�nitions of the length scales of bonded an d nonbonded interactions
in the FENE polymer model used in our study. Thus, the systems can easily be mapped
onto each other by the replacement lBB$ r0. The polymers form monolayer tubes, if the
adsorption strength overcompensates optimal three-dimen sional nearest-neighbor pack-
ing of the monomers. If the adsorption strength is reduced to the extent that intrinsic
attraction becomes competitive, the topologically two-di mensional monolayer is given
up in favor of a double-layer structure extending into the th ird dimension. The polymer
undergoes a topological transition, but keeps a barrellike form [1]. In the following, we
only consider monolayer polymer tubes, as only in this confo rmational phase the analogy
to carbon and (idealized) boron nanotubes is apparent.
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Figure 3: De�nitions of the anglesy and q, shown exemplarily using a part of a (4,4) SWPT.2y = \ (AMB 0);
q= \ (BAB 0).

Adopting the equations from the idealized boron nanotube mo del [24] and the chiral
notation (n,m) from atomic nanotubes, the radius of an (n,m) polymer tube is given by

r (n,m)
poly,M=

r0

2
cosq(n,m)

siny (n,m)
, (3.4)

where r0 is the equilibrium monomer–monomer distance [31] and the co rrected wrapping
angle q(n,m) is given by

cos2q(n,m) =

n(n+ 2m)sin2y (n,m)

(n+ m)2sin2y (n,m) � m2sin2(y (n,m) + x(n,m))
. (3.5)

The anglesy (n,m) and x(n,m)=( ny (n,m) � p )/ m are de�ned by projections of atom positions
upon a circular slice perpendicular to the tube axis [24]. Th ey are obtained by solving the
transcendental equation

0=( n2� m2) sin2
�

y (n,m) + x(n,m)
�

� n(n+ 2m) sin2x(n,m)

+ m(2n+ m) sin2y (n,m) . (3.6)

See also Fig. 3 for de�nition of the angles y and q.

Analogously one can formulate equations for q(n,m) and r (n,m)
poly,7 for the polyhedral

model for carbon nanotubes with �xed bond lengths, crystalli zed in a curved honey-
comb lattice structure. In fact, the wrapping angle q(n,m) for SWCNTs is identical to that
of SWPTs and SWBNTs, respectively, as the base vectorsa1,2 in the SWCNT structure
correspond to the bond vectors in triangular tubes.

The calculation of the polyhedral radius is more challengin g, as the honeycomb cell is
not immune to shearing or tilting, as is a triangular lattice . Indeed, the curvature induced
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by the wrapping deforms the simple hexagonal cells, in contr ast to triangular cells. The
�rst-order correction of the polyhedral radius for SWCNTs is [29]:

r (n,m)
poly,7 = r (n,m)

conv

+

p
3p lCC

�
4(n2+ nm+ m2)3� 9n2m2(n+ m)2

�

64(n2+ nm+ m2)7/2

+ O(1/ n3) . (3.7)

For a concrete description of the limiting behavior of this m odel, we start with the obser-

vation that q(n,m) = q(n,m)
conv (cf. Eqs. (3.1) and (3.5)) for the two special casesn= m and m= 0,

i.e., for (n,n)- and (n,0)-tubes, the conventionally calculated wrapping angles of q= 30�

and q= 0� are valid also in the polyhedral model. This leads to an intui tive interpreta-
tion for the radius of triangular (n,0)-tubes. From the vanishing wrapping angle follows
that there are bonds forming regular polygons with n edges in planes perpendicular to
the tube orientation. Hence, the corresponding tube radius is the circumradius of such
a polygon:

r (n,0)
poly,M=

r0

2sin(p / n)
. (3.8)

Analogously, the radius of triangular (n,n)-tubes can be directly calculated.
In this case, continuations of a1 or a2, projected onto the wrapping vector (or, in the

tube, the slice plane perpendicular to the tube axis), will f orm a regular polygon with
2n edges. Since the angle between the original vectorsa1,2 and their projections, i.e., the
wrapping vector q, is p /6, the lengths of the projected vectors are shortened by the factor
cos(p /6 )=

p
3/2. For the on-tube calculation of the bond length between t wo monomers,

we make use of the fact that the projection angle in a triangul ar lattice does not change
when zipping the planar sheet to a tube:

r (n,n)
poly,M=

p
3r0

4sin(p /2 n)
. (3.9)

Both, Eqs. (3.8) and (3.9), are of course covered by Eq. (3.4), as Eq. (3.6) impliesy = p /2 n
and y = p / n for (n,0) and (n,n) tubes, respectively.

Note that it is not possible to apply similar arguments to cal culate the correct radii of
(n,0) and (n,n) SWCNTs, because the hexagon is not rigid, as the triangle is. Thus dis-
tances between the atoms in the hexagon change when bending. Indeed, for hexagonal
honeycomb tubes (SWCNTs) one �nds, when projecting bonds to p lanes perpendicular
to the tube orientation, polygons with 3 n and 2n edges for armchair and zigzag-tubes,
respectively. But these polygons are not regular anymore, i n the armchair case, and the
lengths of the projections cannot be calculated in such a straightforward way, due to mini-
mal deformations caused by the curvature. However, applyin g such approximations and
corresponding generalizations to (n,m) tubes lead to the same qualitative results, such as
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the (n,m) sequence for increasing radii, as shown below, for example. Quantitative devi-
ations from results of the polyhedral model are in the low per -mille range (not shown).

Generally, although the numerical differences of r (n,m)
conv (Eq. (3.3), with the respective

scale) andr (n,m)
poly (Eqs. (3.4) and (3.7)) do not seem to be particularly striking, and may not

be distinguished in practice, in particular at �nite tempera tures due to �uctuations of the
bond lengths and the tube itself, the physical consequencesare actually important to no-
tice. Consider, for example, (7,0) and (5,3) SWCNTs. Using Eq. (3.3), both would share

the same radius r (7,0)
conv = r (5,3)

conv =
p

3lCC
p

7/2 p and could not be distinguished using this
quantity. However, the structures of the corresponding tub es are completely different,
and in consequence, physical, i.e., nanoelectronic, nanooptic and other material proper-

ties [11,32–34], are in general different as well. Hence,r (n,m)
conv is not suitable to parametrize

SWCNTs, whereasr (n,m)
poly can uniquely associated to any SWCNT structure. A more de-

tailed numerical analysis of the deviations between the con ventional and the polyhedral
approach is given in Ref. [35].

However, for the following discussion of similarities of SW CNTs and SWPTs, sig-
ni�cant precision is required and therefore it is necessary t o take into account these
differences.

4 Mapping between carbon nanotubes and polymer tubes

Since the triangular lattice formed by an unzipped SWPT is ob tained from a Voronoi con-
struction of the hexagonal lattice formed by the carbon atom s in an unzipped SWCNT,
it is appealing to investigate the mapping between these dif ferent systems. This is not
only mathematically interesting, but might also have techn ological consequences for the
design of particularly stable polymer coated carbon nanotu bes or other nanohybrid struc-
tures including SWCNTs and complex molecules [3,5,36–41].

However, as we have discussed in the previous section, it is necessary to examine
geometrical considerations on the tube itself and not on its unzipped form. This is not
trivial due to the curvature and discrete nature of those sys tems, which affects, for ex-
ample, the bending angles between the respective carbon atoms or monomers such that
they generally differ in the unzipped planar shape and in the tube structure.

Exempli�ed for (4,m) tubes, Fig. 4 shows in various types of visualization the gen eral
construction principle of triangular polymer tubes out of h oneycomb SWCNT structures.
A monomer of the polymer chain is placed in the center of each “ hexagonal” plaquette
on the tube, i.e., at the position of the vertices of the associated Voronoi graph of the
hexagonal lattice points in �at (unzipped) space, and then t he monomer is shifted along

the axis perpendicular to the tube axis to the correct distan ce r (n,m)
poly,7 from the tube axis.

Fig. 4 (b) and (c) enable one to sense the generally non-trivial geometrical structure of
SWCNTs. In Fig. 4 (d) the helical aspect of the corresponding triangular tubes, to which
we will return later, is emphasized.
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Figure 4: Di�erent visualizations of (4,m) nanotubes with (l. to r.) 0 � m � 4. Hexagonal SWCNT (red
online) and the corresponding ideal triangular tubes (yellow online) are shown from di�erent viewpoints and
combinations of lattice points (atomic positions) and edges (bonds). The data is the same for each column (m
value) with all lattice points always shown, but edges only in some cases speci�cally (a) both, (b), (c) and (d)
bonds of SWCNTs only and (e) bonds of triangular tubes only.

The length scale in the triangular tube is obviously differe nt from that in the SWCNT.
The resulting scaling of bond lengths is of particular inter est. Equivalently, one can ask
for the radius of an (n,m) polymer tube, with a monomer–monomer bond length scale
r0 equal to lCC. As known, the scaling factor in the conventional planar rep resentation is
aconv =

p
3 independently of n or m, which is hence the limiting case for n ! ¥ in the tube

geometry. For small n and m,

a(n,m)
polyp

3
:=

r (n,m)
poly,7 ( lCC)

p
3r (n,m)

poly,M(r0 = lCC)

n! ¥�! 1

is plotted in Fig. 5 (solid line, “ + ” symbols, left scale).
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Figure 5: Solid graph, left scale: Normalized scaling of lengths in SWCNTs compared to SWPTs in the

polyhedral model. The upper bound of the plot corresponds tothe limiting value of a(n,m)
poly /

p
3 for n ! ¥ .

Dashed graph, right (logarithmic) scale: numerical value of the �rst order correction term to r (n,m)
conv in Eq. (3.7)

for SWCNTs in the polyhedral model. Thex axis is ordered with respect to increasingn and m, i.e., between
two tics marked (n,0) and (n+ 1,0) tubes, all (n,m) tubes with increasing0< m� n are located.

The in�uence of the �rst correction term to r (n,m)
conv in Eq. (3.7) is connected to this scal-

ing. The term is also plotted in Fig. 5 (dashed line, “ � ” symbols, right scale) and can be
considered to be an estimate of the error made by applying Eq. (3.3) for the calculation
of the SWCNT radius. This error can be bigger than the differe nces between radii of two
SWCNTs [35].

5 Computer simulations of polymer tube structures

In the following, we present and discuss results from Monte Ca rlo minimizations of the
bead–spring polymer–wire system introduced in Sect. 2 for s trong wire attraction, such
that the ground states form SWPTs. Compared to the model used in Ref. [1], we in-
troduced extendible bonds and adjusted the equilibrium dis tance of the Lennard-Jones
interactions such, that it coincides with the equilibrium l ength of the FENE bond poten-
tial. This simpli�es the simulations and the bond-length �ex ibility limits, at this point,
the occurrence of defects.

5.1 Simulation in the full conformational space

We perform simulations using generalized-ensemble Monte Ca rlo techniques [19–21] to
search for low-energy con�gurations. We propose new structu res through local updates
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input measured from ground state calculated using polyhedral mod el

s f r 2y in � q in � (n,m) r (n,m)
poly,M 2y (n,m)

poly,M in � q(n,m)
poly,M in �

0.47 0.504� 0.002 131.9� 2.6 19.1� 0.7 (2,1) 0.51962 131.8 18.43
0.53 0.566� 0.002 120.0� 0.8 0.0� 0.4 (3,0) 0.57735 120.0 0.00
0.56 0.597� 0.002 89.9� 0.8 30.7� 0.5 (2,2) 0.61237 90.0 30.0
0.61 0.646� 0.002 98.0� 0.9 13.3� 0.6 (3,1) 0.64526 97.7 13.6
0.65 0.692� 0.002 90.0� 0.4 0.0� 0.3 (4,0) 0.70711 90.0 0.00
0.69 0.732� 0.003 76.5� 0.6 23.5� 0.3 (3,2) 0.74313 76.3 23.3
0.74 0.783� 0.003 77.4� 0.5 10.6� 0.4 (4,1) 0.78561 77.4 10.7
0.78 0.831� 0.003 72.1� 0.6 0.0� 0.4 (5,0) 0.85065 72.0 0.00
0.81 0.858� 0.003 60.0� 0.3 30.1� 0.5 (3,3) 0.86603 60.0 30.0
0.83 0.880� 0.004 64.7� 0.4 19.0� 0.4 (4,2) 0.88462 64.6 19.0
0.88 0.932� 0.004 64.0� 0.3 8.8� 0.4 (5,1) 0.93259 64.0 8.84

Table 1: Ground state characteristics of polymer tubes formed by FENE-polymers adsorbed to a string in the
polymer{wire model. The measured quantities are average values from local measurements at single monomers
in the given structure, see the text for details.

of the Cartesian monomer coordinates, global spherical-cap updates [42], slithering snake
moves, and bond-exchange moves [43].

The results of simulations with polymers of the length N = 32 are summarized in
Table 1. In all our simulations, we set ef = 5.0, i.e., we simulate structures in the monolayer
barrel region 'B' [1]. The input to the simulation is s f , i.e., the effective thickness of the
wire, is given in the �rst column in Table 2. In the following co lumns, average values of
measured local observables are shown. The tube radius r is, for example, measured as
r= å N

i= 1r i / N, with r i being the perpendicular distance of the ith monomer from the center
of the string. The small variance indicates that the monomer s are located on a cylinder
surface, in fact. De�nitions of the characteristic angles y and q, which are also measured
locally at each monomer and then averaged, are given in Fig. 3. We convinced ourself
by simulating all structures at different chain lengths tha t the results are independent
of the actual choice of N. By applying the polyhedral model for triangular tubes, an
(n,m) tube code, given in the �fth column, can uniquely be assigned t o each pair (y ,q).
Finally, in the last three columns, the corresponding calcu lated geometric observables
using the polyhedral model are given, which agree perfectly with the measured ones.
The radius does not match exactly though, which is due to the f act that we did not use
the calculated values from the model as input for the simulat ions, but s f in steps of 0.01 to
avoid any potential bias. However, the �exibility of the bon ds allows the compensation
of these small deviations without causing defects in the gro und-state structures. We will
comment on that in more detail in the next section. After all, we �nd, that the polyhedral
model for boron nanotubes [15] is suitable to describe the completely adsorbed polymer
ground-state structures of a simple polymer–wire model. So me example structures are
visualized in Fig. 6.
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Figure 6: Low-energy tube structures of the simulated polymer{wire model. The structures were found for
di�erent s f (cp. Table 1): (a) s f = 0.47. Slightly excited state, two monomers do not belong to the monolayer
around the wire. The monomers in that closest layer form a (2,1) tube. (b) s f = 0.61. Putative ground-state
forming a (3,1) tube around the wire. (c)s f = 0.83. Putative ground-state forming a (4,2) tube. All shown
polymers consist ofN = 48 monomers.

5.2 Simulations on a cylinder surface

Since we �nd in the perfect monolayer tube conformations all m onomers at the same
distance from the tube axis, i.e., �uctuations of the local r adius of the monolayer tubes
were in fact vanishing, it is useful to directly simulate the polymer on a cylinder sur-
face with �xed radius r. Following this idea, we randomly initialize conformation s in
such a way that each monomer has the same distancer from the string. We propose new
structures by local updates and slithering snake moves in cy lindrical coordinates keep-
ing r untouched. This reduces the conformational space signi�can tly and will allow us
to re�ne our results shown above and determine, for example, i ntervals of radii with sta-
ble ground-state conformations. Furthermore, longer chai ns and hence larger tube radii
could be studied. Finally, as an outlook to subsequent work, defects can be investigated
in detail. See Sect. 5.3 below, for an example.

Simulations were now performed for different r values in the range r2 [0.425,... ,1.424]
independently, with a step width of about 0.01. The lengths o f the simulated polymer
chains ranged from N = 32 to 200. The results presented below also did not depend on
the actual number of monomers N.

As mentioned above, we are looking for ground states in order to �nd a classi�cation
scheme for polymer nanotubes that depends on their radius, a nalogously to that of the
carbon nanotubes. Indeed, this can be reduced to the measurement of the characteristic
angles y and q of such lowest-energy polymer tubes, which we measure as described
above, depending on the given radius. For defect-free conformations, this can then be
related to known observables of SWCNTs.

Table 2 summarizes results from this part of our computation al study, and in Fig. 7
we visualize some of the ground-state structures we found th at belong to different chi-
rality classes. The illustrated structures are marked in Ta ble 2 with an asterisk. The
�rst column shows an (n,m) tube code, the second and third column the corresponding
calculated radius r (n,m)

poly,M and the angle y in the polyhedral model for triangular nano-
tubes (cf. Eqs. (3.4) and (3.6)). The rows are ordered with respect to increasing values of
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Calculated polyhedral Simulation on Cylinder surface (“2D ”) Corresponding
polymer tube input output (Ground State) SWCNT

(n,m) r (n,m)
poly,M 2y in � r type 2y in � q in � q in � type

(1,1) 0.425 (1,1) 181� 6 30.4� 0.5 30.00 (1,1)
0.436. . . 0.447 Doublehelix � (29.2. . . 27.6)� 0.7

(2,0) 0.457. . . 0.466 (2,0) 180� 2 0.0� 1.2 0.00 (2,0)
(2,1) 0.51962 131.810 0.477. . . 0.532 Triplehelix � 132� 2 (20.8. . . 17.5)� 1.0 18.43 (2,1)
(3,0) 0.57735 120.000 0.553. . . 0.574 (3,0)� 120� 0.8 0.0� 0.5 0.00 (3,0)
(2,2) 0.61237 90.0000 0.585. . . 0.617 (2,2)� 90� 1 (31.3. . . 29.6)� 0.3 30.00 (2,2)
(3,1) 0.64526 97.7431 0.627. . . 0.670 4-helix 98� 1 (13.9. . . 12.6)� 0.7 13.57 (3,1)
(4,0) 0.70711 90.0000 0.680. . . 0.712 (4,0) 90.0� 0.7 0.0� 0.5 0.00 (4,0)
(3,2) 0.74313 76.3120 0.723. . . 0.755 5-helix 76.4� 0.7 (23.8. . . 22.7)� 0.4 23.33 (3,2)
(4,1) 0.78561 77.4148 0.765. . . 0.808 5-helix � 77.5� 0.7 (11.0. . . 10.2)� 0.6 10.72 (4,1)
(5,0) 0.85065 72.0000 0.819. . . 0.851 (5,0) 72.0� 0.7 0.0� 0.6 0.00 (5,0)
(3,3) 0.86603 60.0000 0.861 (3,3) 60.0� 0.5 29.9� 0.4 30.00 (3,3)
(4,2) 0.88462 64.6055 0.872. . . 0.904 6-helix 64.7� 0.9 (19.2. . . 18.3)� 0.5 19.01 (4,2)
(5,1) 0.93259 63.9796 0.914. . . 0.957 6-helix 64.0� 0.8 (9.0. . . 8.4)� 0.6 8.84 (5,1)
(6,0) 1.00000 60.0000 0.967. . . (6,0) 60.0� 0.6 0.0� 0.5 0.00 (6,0)
(4,3) 1.00188 53.6574 . . . 1.021 7-helix 53.8� 0.6 26.2� 0.7 25.26 (4,3)
(5,2) 1.03116 55.5587 1.031. . . 1.052 7-helix 55.5� 0.6 (15.9. . . 15.5)� 0.6 16.02 (5,2)
(6,1) 1.08319 54.4683 1.063. . . 1.106 7-helix 54.5� 0.6 (7.6. . . 7.2)� 0.5 7.52 (6,1)
(4,4) 1.13152 45.0000 1.106. . . 1.127 (4,4) 45.0� 0.5 (30.3. . . 30.0)� 0.5 30.00 (4,4)
(5,3) 1.14441 47.8827 1.138 8-helix 47.9� 0.3 21.7� 0.4 21.75 (5,3)
(7,0) 1.15238 51.4286 1.148. . . 1.169 (7,0) 51.4� 0.4 0.0� 0.6 0.00 (7,0)
(6,2) 1.18076 48.5578 1.169. . . 1.201 8-helix 48.6� 0.5 (13.9. . . 13.4)� 0.5 13.83 (6,2)
(7,1) 1.23600 47.3936 1.212. . . 1.254 8-helix 47.4� 0.4 (6.7. . . 6.4)� 0.5 6.54 (7,1)
(5,4) 1.26887 41.3657 1.244. . . 1.276 9-helix 41.3� 0.3 (26.8. . . 26.0)� 0.6 26.32 (5,4)
(6,3) 1.29090 42.9481 1.286 9-helix 42.9� 0.3 19.0� 0.5 19.07 (6,3)
(8,0) 1.30656 45.0000 1.297. . . 1.318 (8,0) 45.0� 0.4 0.0� 0.6 0.00 (8,0)
(7,2) 1.33242 43.0405 1.318. . . 1.361 9-helix 43.0� 0.5 (12.2. . . 11.8)� 0.6 12.17 (7,2)
(8,1) 1.39027 41.9316 1.371. . . 1.424 9-helix 41.9� 0.5 (5.8. . . 5.6)� 0.8 5.79 (8,1)

Table 2: Ground state characteristics of simulated extendible polymers on cylindrical surfaces with radiusr. The
given angles are, as before, average values based on local measurements. See text for a detailed description.
Structure types marked with an \� " are visualized in Fig. 7.

Figure 7: Ground-state tube structures of the polymer modelrestricted to a cylinder surface. The structures
were found at di�erent tube radii and belong to di�erent chirality classes. (a) Doublehelix; (b) Triplehelix, (2,1)
tube; (c) (3,0) tube; (d) (2,2) tube; (e) 5-helix, (4,1) tube. Every picture shows a single polymer, whereas
just the monomer positions are shown and not the bonds between consecutive monomers. Di�erent colors were
used to mark imaginary helical strands. The top row shows a perspective view on the structures, the bottom
row a top view.
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r (n,m)
poly,M. In the fourth column, the input radius is given. Since trans itions between different

chiralities are not continuous, we give an interval of radii , for which the lowest-energy
structures of the polymer fall into the same chirality class , which is given in the �fth col-
umn. By (n+ m)-helix we denote structures which can be considered to be composed of
n+ m virtual, interwoven chains of monomers with a helical wrapp ing, see Fig. 7 for fur-
ther clari�cation. The average values of the angles y and q measured in the ground-state
conformations are listed next to them. In the last two column s, known wrapping an-
gles from SWCNTs could be uniquely assigned to the results fr om our SWPT simulations
along with the corresponding SWCNT types.

5.3 Reproducing SWCNT sequences of chirality

If one sorts SWCNTs with respect to their radii, a speci�c sequ ence of chiralities is found.
This sequence is exactly reproduced by polymer monolayer tu bes, i.e., we can con�rm
the assumed correlation between SWCNTs and SWPTs [1]. In Table 2, we also compare
the radii of ( n,m) polymer tubes inserted into the simulations (column 4) wit h the ex-
act values obtained from Eq. (3.4) (column 2), as well as with the characteristic angles
y and q (columns 3 vs. 6 and 7 vs. 8). Our simulation results agree perfectly with the
predictions from the respective polyhedral model [24] and t he high accuracy allow for
the identi�cation of the chiralities of the polymer tubes. No netheless, there are certain
regions of radii, where the difference of radii between diff erent tube types is extremely
small. Within these regions, it is particularly challengin g to resolve explicitly different
chiralities (see the “plateaus” in Fig. 5 in Ref. [35]). In Ta ble 2, results for (6,0) and (4,3)
tubes are therefore listed in the same row. Their radii in the polyhedral model differs
by less than 0.2%, which is re�ected accordingly in our resul ts. Regarding the wrapping
angles, we could hence reproduce exactly the characteristic sequence for SWCNTs. To-
gether with the considerations about the scaling of lengths between SWCNTs (cf. Fig. 5)
this is the link between ideal SWCNTs and SWPTs.

We would like to emphasize that this accuracy is essential as one would not have been
able to draw these detailed conclusions using the conventio nal approach (Eq. (3.3)) for the
radius calculation. The polymer model with slightly differ ent parameters that was used
in Ref. [1] already yielded the correct trends of the present results, but only the �exible
bond-length model allowed us to study the details precisely and quantitatively correct.
In this case, we �nd transitions at the interfaces between two structural regions. We
observe in the ensemble of low-energy states “competing” co nformations, i.e., different
tube types with very similar ground state energies and tubes with defects or internal
interfaces between regions belonging to different chirali ty classes, see Fig. 8 for examples.

5.4 The link to the internal structure of 'phase B'

Actually, the intriguing monolayer polymer structures we f ound in our previous study [1]
for strong wire adsorption, and which we summarized under th e name 'barrel (B) phase',
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Figure 8: Low energy state with a defect and two regions with di�erent wrappings. The radius of the tube
is r input � 1.11, the competing substructures correspond to (6,1)- and (5,3)-tubes. In (b) the conformation is
shown in an unzipped view for clarity.

made us think about a possible link to single-walled carbon n anotubes and were the mo-
tivation for the present study. Beside the systematic presentation of the results above, let
us therefore comment on some actual structures we found earl ier.

At sf = 0.647, we found in a monolayer polymer conformation consist ing of two com-
peting substructures with different chirality and a defect at the interface between both
substructures (see Fig. 9 (a)) [1]. One region forms a(2,2) tube, the other is a 4-helix with
a measured mean wrapping angle of q= 14� 4, which corresponds to a (3,1) tube. These
observations �t in perfectly with the results presented abov e in Table 2. Both structures
are neighbors in the radius-ordered sequence of tube structures. Slight deviations of the
value of the radius and the larger error of the mean wrapping a ngle trace back to the fact
that we originally used a slightly different polymer model w ith �xed bond length (sticks
instead of elastic bonds) where the optimal distance between two nonbonded monomers
was slightly larger than the bond length. However, on the oth er hand, this indicates
that our results are of general character and do not depend on certain details of the im-
plemented polymer model. Another conformation found in the earlier study was the,
somewhat arti�cial, (1,1) tube at sf = 0.4 (see Fig. 9 (b)). Again, this was con�rmed exactly
by the present study and �ts into the general scheme as present ed here.

Finally, let us look at conformations with larger radius of r � 1.7, as shown in Fig. 9 (c).
There, we found a 12-helix with chiral angle of 20 � 1� , which can now be assigned to a

Figure 9: Monolayer polymer tubes in the barrel phase B for strong wire adsorption. (a)sf = 0.65, (b) sf = 0.40,
and (c) sf = 1.57. Di�erent colors or shadings shall facilitate the perception only, data taken from study presented
in Ref. [1].
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(8,4) tube (not listed in Table 2, but calculations lead to q(8,4) = 19.1 and r (8,4)
poly,M = 1.71).

However, we also found in that region a strong competition be tween conformations
with different structures as well as conformations compose d of different substructures,
as shown for example in Figs. 1 and 4 in Ref. [44]. We �nd for exam ple regions which

can be explained to be parts of (7,5) tubes (not in Table 2,q(7,5) = 24.5,r (7,5)
poly,M= 1.68). This

structure forms also a 12-helix, but with just slightly diff erent wrapping angle compared

to (8,4). Finally, we �nd among those structures (10,1) tubes (q(10,1) = 4.7, r (10,1)
poly,M = 1.70

forming 11-helices. Note the small differences between r (8,4)
poly,M, r (10,1)

poly,M, and r (7,5)
poly,M.

6 Summary

In this study, we have investigated the relationship betwee n single-walled carbon nano-
tubes and the tube phase of a bead–spring polymer model attracted by a thin wire. In
fact, we found surprisingly clear geometrical similaritie s between these different materi-
als. We could only obtain our results by taking into account t he discreteness and curva-
ture effects in the mathematical description of the geometr ical properties of nanotubes.
Hence, we provide an example for the necessity of applying ac curate discrete models,
rather than continuous approximations, in computational s tudies of nanotubes.

To strengthen our theoretical considerations on the link be tween carbon nanotubes
and polymer nanotubes, we employed numerical optimization procedures to construct
lowest-energy polymer conformations for given attraction length scales of the wire (or,
equivalently, given polymer tube radii). Comparing those c onformations based on a
triangular lattice, with carbon nanotubes based on a hexagonal honeycomb lattice, we
found that both share the same chirality sequence and we show how the length scales are
connected. We addressed the problem of competing substructures leading to defects in
non-ideal structures, which de�nitely merits further inves tigation.

The perfect structural coincidence between atomic nanotubes and polymer tubes ex-
plains the internal structure of the barrel phase of polymer s adsorbed at nanowires. It
is also a good starting point for the further systematic inve stigation of hybrid systems
of polymers and single-walled carbon nanotubes, which migh t be of technological inter-
est for controlling, e.g., physical properties of polymer- coated nanotubes. We have also
presented further evidence, that helical conformations ar e intrinsic natural structures in
simple polymer models [45].

Our key result of the universal nature of the sequence of conf ormations in nanotubes
and polymer tubes has developed from a series of simulations . Such extensive 3d simu-
lations have only recently become possible, and the situation is reminiscent of the discov-
eries in the seventies and early eighties as the picture of universality in critical phenom-
ena emerged from the early numerical results of series expansions and simulations, and
a very few experiments. With current and future computer pow er, the two directions
mentioned above, namely the exploration of defective struc tures and the study of hy-
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brid systems should lead into interesting theoretical and p ractical directions in polymer
research and nanotechnology.
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