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The first four flexural thermal vibrational modes of single walled carbon nanotubes

(SWCNTs) of various lengths and radii were studied using atomistic molecular dy-

namics within the framework of the Brenner interatomic potential and Fourier anal-

ysis. These simulations provide clear evidence for the failure of simplistic analytic

models to accurately extract resonance frequencies as the ratio, (R/L), between the

tube radius and the length increases. They are in excellent agreement with the Tim-

oshenko beam model, which includes the effect of both rotary inertia and of shearing

deformation. In addition, our results partially resolve Yakobson’s paradox, and pro-

vide an upper cutoff estimate for the effective SWCNT thickness.
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I. INTRODUCTION

Carbon nanotubes (CNTs) posses unique electrical and mechanical properties and are of

great interest for both basic and applied research. One active research field is that of nano-

electro-mechanical systems (NEMS) based on CNTs. With respect to conventional NEMS,

CNTs are extremely light, have very high Young’s Moduli (∼ 5TPa), contain a small amount

of structural defects, and it is anticipated that they will oscillate at high frequencies with

high quality factors (Q). For example, a typical single wall carbon nanotube (SWCNT) of

100nm length and 1nm in diameter has total mass four orders of magnitude smaller than

conventional NEMS. Hence, assuming all other properties being equal, CNT resonators are

expected to reach the ultimate mass, stress and pressure sensitivities. These attributes col-

lectively make CNTs suitable for a multitude of technological applications such as ultrafast

sensors, actuators and signal processing components1,2.

In the last few years there has been significant progress on experimental measurements

of the vibrational modes of SWCNTs, on achieving extremely high quality factors, and on

sensing ultra low external masses that adhere to the nanotubes3–7. Since, the natural fre-

quency is sensitive to the applied external load, one of the principles of sensing is based on

the natural frequency shift of a carbon nanotube resonator under an external perturbation.

Numerous studies have been made of the vibrational modes of SWCNTs with various ex-

ternal parameters, using molecular dynamics (MD) simulations8–13, continuum mechanics

models14–16, and structural mechanics approaches17,18. Their objectives were to estimate the

elastic constants of CNTs, such as Young’s (E) and shear (G) moduli, Poisson’s ratio (ν),

and the effective CNT thickness (h).

Estimates for the Young’s modulus of carbon nanotubes are scattered in the literature,

ranging between 1-6 TPa15,17,19,20. This scattering is known as Yakobson’s paradox21. Huang

et al22 assert this range is a result of the scattering of the estimates for the thicknesses of

the nanotube. They obtain an analytical expression for the tube thickness, and therefore

the elastic moduli, and demonstrate their dependence on the type of loading e.g., uniaxial

tension, or uniaxial stretching as well as on the nanotube radius, R, and chirality when

R < 1nm. They also showed that the thickness of graphene is dependent on the interatomic

potential. A complementary analytical model by Wang and Zhang23 took the different ap-

proach of measuring h and hence E, but while these calculations certainly shed light on
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Yakobson’s paradox they do not completely address the issue of modeling the frequency

dependence of nanotube vibrations on radius and length. Both these studies were based on

a continuum model. However, as the specimen size diminishes, the discrete structure of the

material can no longer be homogenized into a continuum, because the nanotube thickness

will also vary as a function of its vibrational modes (n) near the places where it is more

sharply bent or extended. Therefore, we suspect that the entire picture may be more com-

plex. Since knowledge of the frequency dependence on length, radius and loading is essential

to progress towards deeper understanding and technological applications, we have made ex-

tensive, carefully equilibrated molecular dynamics (MD) simulations of SWCNTs and now

present a precise analysis of their vibrations. Our high quality data for the thermal vibra-

tions were decomposed into different modes, and the dependence of the four lowest modes

on the lengths and radius of the nanotube was calculated. After describing our approach

and results we will compare them with the predictions of two continuum mechanics models

of beams. We will conclude with a discussion of agreements and discrepancies in the light

of Yakobson’s paradox, and the Huang et al22 results.

II. SIMULATION DETAILS AND RESULTS

The Brenner interatomic potential24 and the predictor corrector algorithm were selected

for the MD. The Brenner interatomic potential is an analytic potential energy function for

solid carbon and hydrocarbon molecules based on a reactive bond order (REBO) formal-

ism which allows covalent bond breaking and creation with associated changes in atomic

hybridization within a classical potential. Being empirically derived (by fitting to data

sets from experiments and to ab initio calculations) it does not treat electrons explicitly

or include any explicit quantum effects. However, it is transferable to different carbon hy-

bridizations and allotropes and we selected an extended version that has been well verified

for fullerenes and nanotubes25–27. The length of runs needed for the vibrational analysis

excludes the possibility of using an approach that treats electrons explicitly or even within

a tight-binding approximation, thus this potential is an optimal choice. It is equivalent to

section I of ref.22. Moreover, the potential’s extension to hydrocarbon molecules will greatly

simplify the modeling of vibrational changes when additional molecules are adsorbed on

the SWCNT, as we plan to carry out in the future. Our code is applicable to nanotubes of
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FIG. 1. (Color online) (a) Single Walled Carbon Nanotube (green), with the CA made up of

the centers of mass of each period of the nanotube as (red) spheres inside the nanotube, and a

(blue) large atom to indicate its CM. The ∗ marks one place where all the first 4 modes have finite

amplitude (b) vibrating nanotube with clamped ends (only the left half of the tube was drawn)

(c) one period of a (7,7) SWCNT. The images are generated with AViz28 (d) FFT analysis of the

first four thermal vibrational modes (n=1-4) in the Z direction at a point near the center of mass

of the 30th period at 300K.

any radius and length, and the nanotube is resilient to deformations far larger than those it

experiences here. Throughout the code development we generated still and animated atomic

images with AViz28 for verification purposes.

In Fig. 1(a) we show a (7,7) SWCNT, with a single period (28 atoms here) drawn in

Fig. 1(c). The axis of the nanotube is in the Y direction, and we study vibrations in the

Z direction. (Our validation process included confirming identical (within statistical error)

results for vibrations in the X direction.) Different boundary conditions were explored, but

for the purposes of recording vibrations for analysis and comparison with beam equation

the nanotubes were clamped at both ends, by freezing the first(last) 3 periods as shown in

Fig. 1(b) (where only the left half of the tube was drawn).

A large number of SWCNTs with different lengths and radii were studied, and in order to

reduce the amount of data needed for the vibrational analysis we selected some special points
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where data was recorded. The centers of mass (spheres inside the nanotube in Fig. 1(a)) for

each period were identified, making up a line of points which we call the centered axis (CA).

The center of mass (CM) of the entire nanotube (large sphere in Fig. 1(a)) falls in the middle

of this line. Since at the CM the n = 2, 4 amplitudes vanish, we monitored vibrations near

the CM of the 10th period, which is about 1/4 of the way along the SWCNT, indicated by

∗ in Figs. 1(a), and (b).

Two different thermodynamic ensembles were tested: canonical and microcanonical. No

substantial difference in frequency values was found and we present the canonical ensemble

results below. In order to keep temperature constant a Berendsen thermostat29 was applied.

To ensure stable nanotube structure and eliminate intrinsic tension, we collected data af-

ter a period of slow initial thermalization to 300K (periodic boundary conditions with no

frozen edges) waiting until the length of the equilibrated nanotube remained constant up to

insignificant fluctuations. In order to obtain adequate statistics for all vibrational modes we

let every nanotube vibrate 1000 times more than the period of its lowest frequency, using a

MD timestep of 0.5 fsec. We then applied a Fast Fourier Transform (FFT) analysis to the

data at several points, (including one near the CM) to calculate the power as a function

of frequency for each nanotube. Fig. 1(d) depicts the frequency as a function of the power

of the vibrational modes after the FFT for the shortest nanotube (98.38 Å) at the point

indicated by ∗ in Figs. 1(a), and (b), about 1.42 Å from the CM of the 10th period. As

expected, at this point the 2nd mode had the highest amplitude and the 4th had the lowest.

We initially investigated the effect of the length on the vibrational frequencies, building

(7,7) SWCNTs with lengths (L) of 98.38, 147.57, 196.76, 245.95 and 295.14 Å with a di-

ameter (= 2R) of 9.5 Å. Due to the fact that 3 last/first periods are frozen the vibrating

fragments of the nanotubes are 83.62, 132.81, 182.00, 231.19 and 280.38 Å long respectively.

In Fig. 2 we show the frequencies of the first four modes as a function of the length of the

nanotube (symbols +, ◦, ∗, and � are for modes 1-4 respectively).

We also simulated the frequencies of the first four modes as a function of nanotube radius.

We changed the aspect ratio to create different nanotubes of fixed 98.38 Å length. Nanotubes

of the following chiral vectors and radii were tested: (3,3) R = 2.0 Å, (5,5) R = 3.39 Å, (7,7)

R = 4.75 Å, (9,9) R = 6.10 Å, (11,11) R = 7.46 Å and (14,14) R = 9.49 Å. Again the 3
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FIG. 2. (Color online) First 4 vibrational modes as a function of length. Symbols +, ◦, ∗, and �

are for modes 1-4 respectively, and continuous and dashed-dot lines are derived from Eq. 3.

last/first periods were frozen giving a vibrating fragment of 83.62Å. Fig. 3 depicts frequency

values as a function of tube radius where the same mode notation as for Fig. 2 was used.

III. COMPARISON WITH A SIMPLE CONTINUUM MODEL

The oscillation motion of NEMS based on CNTs is often described via continuum mechan-

ics, where SWCNTs are modeled as continuous beam30 or shells15 with fixed wall thickness,

h, and fixed Young’s modulus, E31,32. Typically the ”tube length”/”tube radius” (L/R)

aspect ratio is very large, and the SWCNT may be regarded as homogenous beam with

the same cross section and elastic properties. A continuous, homogeneous, isotropic, linear

elastic beam whose properties do not vary along its length will obey the Euler-Bernoulli

beam equation

EI
∂4u

∂y4
− T0

∂2u

∂y2
= −ρAm

∂2u

∂t2
= ω2ρAmu, (1)

where I = πRh(4R2 +h2)/4 is the moment of inertia, u is the transverse beam displacement

(in our case, in either the x or z direction), T0 is the residual tension, ρ the density, with a

cross sectional area of Am = 2πRh, and angular frequency ω. One can perform the following
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FIG. 3. (Color online) First 4 modes vibrational modes as a function of radius. Symbols +, ◦, ∗,

and � are for modes 1-4 respectively, and continuous lines are derived from Fig. 3.

transformation, y = ξL, for the dimensionless parameter ξ and Eq. 1 becomes

∂4u

∂ξ4
− L2

L2
0

∂2u

∂ξ2
=
∂4u

∂ξ4
− 1

p2
∂2u

∂ξ2
=
ω2ρAmL

4

EI
u = β4u. (2)

L2
0 = EI/T0, p = L0/L, and β4 = ω2ρAmL

4/EI. β is a parameter whose importance

becomes apparent when boundary conditions will be imposed. Eq. 2 has an analytical solu-

tion and for appropriate boundary conditions the resonance frequencies can be found. For

T0 = 0, and the boundary condition of a beam clamped at both ends, solution for Eq. 2 for

the first four modes yields β0
n = 4.73, 7.85, 10.99, 14.13 respectively31. Knowing β0

n gives the

resonance frequencies of

f 0
n =

(β0
n)2

2π

√
EI

ρAm

1

L2
. (3)

Eq. 3 predicts that the frequency depends linearly on tube radius and has a length de-

pendence of 1/L2, assuming that R, h, ρ and E are constant. Figs. 2, and 3 depict detailed

comparisons between the simulated data and Eq. 3. Initially, a best fit for the first mode of

Fig. 2 was derived, and very good agreement was obtained (dashed-dot red line in Fig. 2). It

is worth mentioning that the mass per unit length was calculated directly by counting the

number of carbon atoms per unit cell in these armchair tubes and then multiplying it by

the number of unit cells in one meter, and not by using the approximate value given by the
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density ρ. The bending rigidity, EI, turns out to be EI = 6.7± 0.6 · 10−26Nm2, and from

Eq. 3 one may obtain the anticipated higher vibrational modes for the different tube lengths.

These results are plotted with continuous black lines in Fig. 2. Since EI depends on the

tube radius, the bending rigidity for the second set of data presented in Fig. 3 was calculated

using ratios between various moments of inertia. For that purpose a tube thickness, h, of

0.66Å was assumed.

From both figures it is clear that for small µ = R/λn, where λn is the wavelength of

the nth mode, the Euler-Bernoulli (EB) beam model predicts the natural frequencies as

well as the higher vibrational modes of SWCNTs very well. Moreover, for h = 0.66Å, and

Poisson’s ratio ν = 0.4, it gives a tension rigidity Eh/(1 − ν2) = 236GPa · nm, which is

in excellent agreement with the calculated tension rigidity from Huang et al22. However,

as µ increases the deviations from the classical beam model become more and more signif-

icant and alternative models should be considered. One simplified model can allow for the

Young’s modulus to be varied over the different lengths and tube radii as long as Eq. 3 is

satisfied. The result of such an analysis is shown in Fig. 4, where the ratio of the calculated

bending rigidity to (EI)0 at small µ is plotted as function of µ. The ◦ / + symbols are

attributed to the f vs L / f vs R data. One can notice that most of the data is scattered

along some imaginary line that starts around 1 and drops down to fifth of its initial value

as µ increases. The significant drop starts around µ ' 0.05 and by examining each point

separately together with its corresponding location in Figures 2 or 3 one can observe that

for points below µ ' 0.05 the agreement with the EB model is very good, but above this

value it becomes poorer, as µ increases. Although several theoretical studies predict radius

dependance of the bending rigidity17,22,33 the overall change is expected to be smaller than

that presented in Fig. 4.

IV. EXTENDED MODEL AND DISCUSSION OF RESULTS

One way to proceed further is to abandon the beam model of SWCNTs and adopt the

shell model15 in order to explain the simulated data. However, since in the limit of small

µ, the EB beam model coincides very well with the data, it would be beneficial to extend

this model to larger µ. An extension of the EB beam model for larger µ is known as
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FIG. 4. (Color online) Relative bending rigidity versus µ = R/λn. The ◦ / + symbols correspond

to the f vs L / f vs R data respectively.

the Timoshenko beam model34 which takes into account shear deformation and rotational

inertia effects, making it suitable for describing the behavior of short beams, in the limit

when the wavelength approaches the thickness of the beam. Physically, taking into account

the added mechanisms of deformation effectively lowers the stiffness of the beam, and lowers

the predicted resonance frequencies. The Timoshenko beam equation has the following

form34:

EI
∂4u

∂y4
+ ω2ρI

(
1 +

EAm
AeGk

)
∂2u

∂y2
= ω2ρAm

(
1− ω2ρI

AeGk

)
u, (4)

where G is the shear modulus, and k is the Timoshenko shear coefficient, which depends

on the geometry. Normally k = 9/10 for circular cross sections. The appearance of the

cross section of the tube in Eq. 4 originates from two different sources: Am derives from the

force balance equation, whereas Ae is a cross section originating from the elastic stress-strain

constitutive relation34. Therefore, Am = 2πRhm and Ae = 2πRhe. Since the total mass per

unit length for each tube in the simulation, m = Amρ, is known, one can replace ρ by m/Am,

and has the freedom to chose hm = 3.4 Å. After replacing ρ by m/Am, and changing to the

dimensionless parameter ξ = y/L, Eq. 4 transforms into

∂4u

∂ξ4
+
ω2mL2

AmE

(
1 +

EAm
AeGk

)
∂2u

∂ξ2
=
ω2mL4

EI

(
1− ω2mI

AmAeGk

)
u, (5)
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which has the same form as Eq. 2 with the following assignments:

1

p2
=
ω2mL210−3

AmE

(
1 +

EAm
AeGk

)
, (6)

β4 =
ω2mL410−3

EI

(
1− ω2mI10−3

AmAeGk

)
, (7)

where ω is in THz, m in fg, L,R, he, hm are in nm, and E, and G are in TPa.

One may observe that Eq. 5 has the same structure as Eq. 2 for T0 = − | T0 |, which

means that the beam is under compression, and as a result the resonance frequencies will

be smaller than the f 0
n, given by Eq. 3. Before solving Eq. 5 let us first examine Eq. 2.

This equation has an analytical solution for T 6= 0 as well, however the expression is quite

cumbersome, but may be defined in the following relation, βn = F(TL2/EI) = F(p2) where

T = −T0 > 0. For q = 1/p → 0 βn → β0
n, hence we can expand F(p2) for small q. Up to

second order in p one finds

βn ' β0
n −

αn
p2

= β0
n − αn

TL2

EI
, (8)

where αn = 0.029, 0.024, 0.019, 0.015 for modes number n=1-4 respectively. Eq. 8 demon-

strates how the vibrational mode frequencies decrease as the beam is subjected to a com-

pressive load, T . From a Taylor expansion one has βn − β0
n '

∂βn
∂ω
δω, and together with

Eqs. 6, 7, and 8 one obtains

δωn = ωn − ωn0 = − αn
p2∂βn/∂ω

= −2αn(β0
n)

3
ω0
n

I

L2Am

1 + EAm

GkAe

1− 2ω0
nmI

AmAeGk

. (9)

For σ = R/L � 1, he = 0.66 Å ¡ hm = 3.4 Å and G = E/2(1 + ν) as anticipated for a

homogenous material, Eq. 9 becomes

δωn = −2αn(β0
n)

3
ω0
n

EI

L2GkAe
' −αn(β0

n)
3
ω0
n

R2

L2

E

kG
, (10)

where the last approximation is justified when he � R, which is usually the case. After

substitution of all the relevant coefficients in Eq. 10 one finds

δωn = −Cnω0
1

(
β0
nR

β0
1L

)2
E

kG
, (11)

where Cn = 3.07, 11.67, 25.32, and 44.20 for modes number n=1-4 respectively. Eq. 11

predicts the following: i) the shift of the resonance frequencies is negative and it scales as

σ = R/L as expected. ii) the shift increases for higher vibrational modes. iii) δωn/Cn/ω
0
n ∝
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(R/L)2 and the proportionality coefficient is E
kG

. The simulated data agree very well with

these predictions, and indeed linear dependence of δωn/Cn/ω
0
n versus (R/L)2 is found with

coefficient E
kG

= 3.5±0.5 for small σ = R/L. Assuming k ' 0.9, one gets E/G ' 3.15±0.45

which is in good agreement with E/G = 2(1 + ν) = 2.8 for homogenous material. Knowing

the ratio of E/kG leaves us with two variables, he and E. The following procedure was used

in order to find the eigenvalues, ωn, of Eq. 5 that correspond best to the simulated data:

The solution for Eq. 2 with double clamped beam boundary conditions can be written as

βn = F(p) and is plotted for the first four modes in Fig. 5 (colored continuous lines). One

can notice that for p > 1 βn → β0
n, meaning that the residual tension plays no major role.

However, as p decreases, βn decreases as well until p→ pcr(n) where beyond these points no

solution for Eq. 2 exists. For example for the first mode pcr(n = 1) = 1/(2π) ' 0.16, where

after substituting the definition of p one receives | Tcr |= 4π2EI
L2 which is the Euler Bernoulli

instability criteria for buckling. Next, we eliminate ω from Eqs. 6, and 7 and find

βn =

(
AmGAe(L

2p2(AmE + AeG)− EI)

Ip4(AmE + AeG)

)1/4

= V(p). (12)

Solutions to Eq. 5 are found from the intersection points of β = V(p) = F(p). Fig. 5 de-

picts four intersection points (black +) for the first four modes with Eq. 12 (blue dashed-dot

line) for E = 5.5TPa and he = 0.47 Å. The fitting procedure modifies only E and he in

order to minimize the distance in the β − p plane between the eigenvalues of Eq. 5 (black

+) and the simulated frequencies (green ◦). The minimization is perform using all the

simulated data points with two fitting parameters (E, and he), and the results are depicted

in Figs. 6, and 7. The continuous lines are based on the theoretical model, and the discrete

points are the simulated data. The Young’s modulus is calculated to be E = 3.83TPa, and

the tube thickness is he = 0.67 Å. These values match those found in Huang et al22. For

the data of f versus L the agreement between experiment and theory is excellent. This is

expected since for this data set, the maximum value of µ = R/λn = 0.11 which is smaller

than the maximum, µ = 0.22, of the other set. However, in the case of the second set of

data, f versus R, the model matches the simulated data quite well, and the ”roll off” of the

resonance frequencies for larger radii are well observed.

Three fundamental questions arise with regard to these findings: i) Why do the resonance
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FIG. 5. (Color online) Fitting procedure. The four continuous colored lines represent the solutions

of Eq. 2, i.e., βn = F(p) for the first four vibrational modes. The blue dashed-dot line satisfies

Eq. 12, i.e., β = V(p). The solutions for Eq. 5 are the intersection points between these lines (black

+). The fitting procedure minimizes the absolute distance between these intersection points with

the simulated data (green ◦).

frequencies almost saturate for big radii? ii) Can we extract E and he uniquely? iii) In light

of several studies that predict that the tension rigidity, (E · he)/(1 − ν2) depends on radii,

how do the above results change if one allows for the tension rigidity to be varied slightly?

Let us start with the first question. By examining Eq. 6 and substituting ω0
n one finds

1

p2
' (β0

n)
4
(
R

L

)2
E

2Gk
. (13)

Hence, as the radius increases and/or the vibrational modes under consideration become

larger, p becomes smaller, the effective compression is stronger, and as a result the beam

approaches its critical buckling singularity points. Thus, the beam become softer and the

anticipated resonance frequencies are reduced in comparison with f 0
n. Since a SWCNT

can be considered in the framework of the shell model, local as well as global buckling are

predicted15. These local buckling instabilities can affect the circular cross section? , and

hence modify the bending and shear rigidities. If one allows for the effective tube thickness

(he) to be modified slightly with radius but keeps the same Young’s and shear moduli as

12



FIG. 6. (Color online) Main panel: First 4 vibrational modes as a function of length. Symbols

+, ◦, ∗, and � are for modes 1-4 respectively, continuous lines are derived from Eq. 5 with E =

3.5kG = 3.83TPa and he = 0.67Å, and dashed-dot lines are solutions for the same Eq. with the

same bending and shear rigidities but with 0.4 ≤ he ≤ 0.6Å. Inset: Possible solutions for Eq. 5 are

marked by ◦ in the E − he plane and the continuous line corresponds to E · he = 246GPa · nm.

were found before (Figs. 7, and 6) excellent agreement between the model and simulated

data is also obtained for the f versus R data (dashed-dot lines in Figs. 6, and 7). The overall

modification of the tube thickness was small (between 0.6Å for the small radius to 0.4Å for

the thickest tube), however, its influence on the fitted data is significant, mainly for the high

µ points.

We have also been concerned about the issue of the origin of the radius dependence of

the shell thickness. Of course this is of quantum mechanical origin, and members of our

group have considered this in the context of both nanotubes and other carbon allotropes. In

a recent paper35 the authors compare an abinitio study (with VASP) of electronic density

of sp2 and sp3 bonds with classical potential studies of sp2/sp3 diamond samples. The

Brenner potential is indeed classical but is parameterized well enough to give correct results

for atomic locations when is compared with the VASP results. To get the actual electronic

density widths one need to rely on abinitio calculations.

We plaan to extend this comparison to nanotubes and in fact have already calculated
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FIG. 7. (Color online) Main panel: First 4 vibrational modes as a function of radius. Symbols

+, ◦, ∗, and � are for modes 1-4 respectively, continuous lines are derived from Eq. 5 with E =

3.5kG = 3.83TPa and he = 0.67Å, and dashed-dot lines are solutions for the same Eq. with the

same bending and shear rigidities but with 0.4 ≤ he ≤ 0.6Å.

electron densities for the undeformed nanotube as a proof of concept and are just starting

to do this for the deformed nanotubes of this manuscript. Because of the additional student

who was initially involved in the nanotube width study and the currently unclear situation

as to who will continue it, and its early state, we do not want to present this result yet in

public or as part of this paper, but have made some additions to the manuscript to refer to

the recently published paper and to our unpublished results. Figs. 7, and 6 show good

agreement between experiment and theory for E = 3.83TPa and he = 0.67 Å. Are these

values are unique, or may one find other values with similar matching? As was discussed

by many experimentalists and theoreticians in this field, and known as Yakobson’s paradox,

the combination of Y = Ehe is the quantity is usually measured and studied. Despite the

big scattering in the values of E and he that were published in the literature, and may be

dependent on loading as well22, the distribution of Y is quite sharp and it is centered around

246GPa · nm. From the Timoshenko beam model, one can observe from Eqs. 5, 6, and 7

that 1
p2
∝ ω2

heE
and β4 ∝ ω2

heE
(1− aω2

G
). Thus, for aω

2

G
� 1, the same paradox will appear for

this model. However, as µ and ω increase this term becomes larger and therefore partially
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resolves Yakobson’s paradox. Specifically, the possible solutions for E and he according to

the presented model in the E − he plane are depicted in the inset of Fig. 6. They indeed

fulfill the condition of E · he = Const = 246GPa · nm (continuous line) but he = 3.4 Å is

beyond this range.

V. CONCLUSIONS

In summary, we presented a detailed atomistic molecular dynamics simulation and anal-

ysis of the thermal vibrational modes of SWCNTs within the Brenner interatomic potential.

The simulation spans substantial range of tube length and radii, and agrees well with Euler-

Bernoulli continuum beam model for small µ = R/λ ratios. However, for bigger µ the

data deviates significantly from the predicted model, and an alternative model (known as

the Timoshenko model), that takes into account the effects of rotary inertia and shear-

ing deformation was adopted. The new model agrees well with the simulated data, and

the reduction of the eigenvalues of the vibrational modes was attributed to softening of

the tube by compression close to global or local buckling instabilities. The results of this

study may be relevant also for the design of high frequency NEMS based on SWCNTs. In

contradiction to common belief that as the tube become shorter, or thicker, the resonance

frequencies increase, the simulation and the model emphasis the significance of the dimen-

sionless parameter µ and show that for µ > 0.05 the resonance frequencies are much lower

than expected.
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